Why Two Approaches for T-AVR

A Pichard, MD

Director Cath Labs,

Washington Hospital Center.

Professor of Medicine (Cardiology),

Georgetown University.

Conflict of Interest

Proctor for Edwards Lifesciences Speaker Bureau St Jude Medical

Currently Available Access

Buellesfeld et al. EHJ 2011

Transfemoral Approach

- Can be easy and simple
- Can have lethal complications

Sapien Edwards Valve

23 mm valve: 22 F Sheath

26 mm valve: 24 F sheath

Sapien XT Valve

23 mm valve: 18 F Sheath

26 mm valve: 19 F sheath

CoreValve

25 F

21 F

18 F

High quality Iliac Imaging Indispensable

4F direct iliac injection for CT. JACC Imaging 2009;2:1404-11

But not all iliacs can accommodate the large delivery sheaths

Mortality vs. Major Vasc Complics TAVI patients

PARTNER Comparison of Outcomes High-Risk (A) vs. Inoperable Patients (B).

Femoral Access

Significant "danger" if iliac dimensions and morphology less than adequate.

A alternative access route to be considered...

Trans Apical Approach

- Excellent choice for those with:
 - No femoral access
 - High risk femoral access

Planning TA TAVI with CT

Choosing the site for skin incision

Place hemostat at apex under Fluoro guidance

Choosing the optimal site for Apical Entry in Re-do Patients

Injection in native LAD

Injection in RIMA to see LAD

Optimal Needle Puncture is Performed under Fluoroscopy

Needle is pointed towards valve

It makes access to valve very direct, without impinging on MV apparatus

Echo confirms the wire has no MV engagement

Is there less CVA with TA Access?

Existing Data shows
no significant difference
in Stroke rate
for transfemoral and transapical approaches.

Trans Apical T-AVR at WHC

- 20% TA in the 2009.
 - √ 16% vascular complications
- 50-60% TA in 2011
 - √ 0% vascular complication

Subclavian Access.

For patients with:

- Poor TF access.
- Not good candidates for TA:
 - Very low EF
 - Marked LVH
 - Thoracic deformity
 - Severe lung disease
- CoreValve with poor femoral access

Subclavian Access. Italian Registry.

Subclavian Access

Bypasses the aortic arch.

Better control of valve positioning than TF.

Direct closure by surgeon.

Avoids apical trauma.

Avoids general anesthesia and chest tubes.

Faster recovery than TA

Trans Aortic Access

Small thoracotomy.

Direct puncture of ascending aorta.

Limited experience with this approach.

Conclusions

- The team performing Transcutaneous AVR needs to have experience with several access routes, to maximize success and safety.
- Newer devices and technology may alter the proportion of each access route.

The end